
Educational Applications of Multi-Client Synchronization
through Improved Web Graph Semantics

Michael Capps Brian Ladd     David Stotts Lars Nyland
The University of North Carolina at Chapel Hill   <capps, ladd, stotts, nyland>@cs.unc.edu

Abstract
The Multi-Head, Multi-Tail, Multi-Client (MMM)

Browsing Project is a continuing effort to bring
stronger graph semantics to the World Wide Web
thereby increasing the Web's usefulness for
collaboration and education.  The first modified
browser [1] provided facilities for links with multiple
heads and tails, thereby giving the content author the
ability to direct concurrent and synchronized browsing
streams.  The web author can direct the paths of his
readers, and ensure that they visit pages in the correct
context and order desired.

Our most recent effort [2] was the construction of a
layer that filters content between the reader and the
Web.  This layer allows the ready composition of graph
protocols so that Web content can be interpreted
according to a variety of graph models.  The model of
the first project was expanded to be a full colored Petri
net, thereby allowing synchronization of multiple
browsing streams; the application of the MMM project
to education now extends to a full collaborative
classroom.

Introduction

The Multi-Head, Multi-Tail, Multi-Client (MMM)
Browsing Project at UNC is a continuing effort to bring
stronger graph semantics to the World Wide Web,
thereby increasing its usefulness in a variety of
collaborative and programming situations.  The first
cycle saw the creation of the MMM browser, a modified
version of NCSA's Mosaic client which included special
handlers for multi-headed multi-tailed hyperlinks.  In the
first MMM paper [1], we described how these multilinks
offered the author both the ability to synchronize his
reader's browsing paths, as well as to direct multiple
concurrent paths.  We explain below how this browser
was fashioned, and the changes to HTML that were
necessary to support the additional functions.

The second research effort was a generalization of the
first MMM project.  We realized that it might be
possible to develop an interpretive layer in a browser that
would read generalized link and node structures and from
them devise a graph of a type specified either by author
or user.  In other words, the author could develop a series
of interlinked pages, and the user might browse them as

if they were nodes in a Petri net or nodes in a Parallel
Finite Automaton. This Semantic Web Graph Layer,
which we term the SWGL, implements the graph
protocols in a concatenated stream of content filters.
This gives us flexible extendibility, in that the next
protocol often only requires a new filter to be added to an
old protocol, as well as an interesting tool for graph
protocol extension, by modifying the composition or
order of known filter streams.  Later in this paper we
explore the architecture of this layer, as well as the
further modifications to HTML that were necessary to
support the generic protocol interface.  Greater detail can
be found in [2].

In addition to the graph layer, we concurrently
explored a simpler, but more rapidly prototypable,
server-side scripting design.  Later in this paper we
discuss the advantages of each design path and our
conclusions.

The most recent directions of the MMM project sprang
from a demonstration of the abilities of the SWGL.  We
originally chose the colored Petri net (CPN) protocol to
display the filter-composition architecture of the SWGL,
as well as to show the multi-client session manager that
was necessary to synchronize browsing behavior of
multiple readers.  The value of CPNs in collaboration
has already been investigated [3]; we now are
investigating the application of our CPN collaboration
tool to a standard classroom environment.

Our paper begins with a comparison of our system to
other CSCW projects.  We continue with an introduction
to Petri nets, a concept used throughout the paper and
our research.  The main sections of the paper use that
information to explain the three MMM projects.  We
conclude with what we consider the successes and
failings of the MMM research, as well as a hint of
possible directions in the project.

Petri nets

Petri nets are a model of computation used to describe
parallel processes, essentially bipartite graphs with place
nodes and transition nodes connected by links. Links are
constrained to connect either a place to a transition or a
transition to a place. Places can contain tokens, which are
markers representing the state of the computation. In a
traditional monochromatic Petri net, when all of the
places leading into a transition contain at least one token,



the transition is active. Computation in the Petri net
proceeds by firing an active transition, removing one
token from each of the incoming places and adding one
token to each of the outgoing places from the fired
transition.

This model of computation can be applied to browsing
a hypertext document [3].  In Web terms: a page is a
place, a page is made visible in our browser when it has
at least one token, and our specialized Multi-HTML
constructs are transitions, complete with the list of links
into and out of the transition. Our first work uses a
slight simplification of this interpretation, parallel finite
automata, that are like Petri nets except that they do not
track any more than a single token in a place.

In our most recent work, we make use of an extension
to monochromatic Petri nets, the colored Petri net (CPN)
[7]. Here there are different types of tokens, known as
colors, and transitions can have more complicated
formulae for activation such as "A token in each of the
two input places, but they must not be of the same
color."  The SWGL interprets each person in a session as
using a different-colored token. Hence the author can
specify the desired browsing semantics for a group by
describing the transition activation rules.

Multi-Head, Multi-Tail Mosaic

The first phase of research was prompted by two
particular problems the current generation of Web
protocols fails to handle: concurrent browsing streams
and synchronization of browsing streams. Concurrent
browsing streams are two or more paths of browsing, all
of which are part of the same user's browsing session.
Many current browsers permit the reader to follow a link
in such a way that a new window is opened with the
content at the tail end of the link; they do not, however,
permit authors to specify this behavior directly in their
documents. Synchronization of multiple browsing
streams is necessary to ensure that the reader is able to
advance so far in one stream without advancing another,
or to advance only along with multiple other streams in
lock step.  Current Web browsers and protocols fail to
address these needs.

Authors of computer-aided instructional material have,
traditionally, had great control over the order of
presentation of their material. The power of hypermedia,
though, is that readers can follow train-of-thought
explorations in linked information structures. As CAI
applications migrate to the Web, authors find HTML
restricts their ability to express orderings more
complicated than one browsing thread. Our methods
allow authors to integrate some control of presentation
order with this traditional browsing freedom. The
generalizations of the link we have created allows a
mixing of both capabilities.

We encapsulated this extended Web graph model in a
novel browsing client, Multi-head Multi-tail Mosaic

(MMM). We also created MHTML, an extension of
HTML with facilities for expressing multi-head/multi-
tail links. The resulting graph semantics are equivalent in
a formal context to those of a Parallel Finite Automaton
(PFA), as mentioned above. PFA's can be used in
similar manner to Petri nets for specifying
hyperdocument structure, as explored in the Trellis
system [3,4]. Automata have been used to good effect in
computer-aided instruction and other fields where control
over the traversal of a graph is important. It is useful to
note that neither of these two models allows
synchronization between the browsing streams of two
separate processes.  This behavior can be specified with a
simple multi-user graph model such as colored Petri nets
(CPNs); we explore that avenue in our more recent
research.

Implementation of prototype system

The MMM project's original goal was to test the
usefulness of PFA semantics in the World Wide Web
setting; the focus was on rapid development of a
prototype.  To ensure an appropriate sample population,
it was necessary to make that prototype acceptable to
current Web users.  We chose to modify a popular and
freely-available browser (NCSA Mosaic), as we were felt
users would be more willing to experiment with a newly-
downloaded browser than a similarly-acquired server.
Less than two thousand lines of code pre-process
MHTML into HTML which the standard Mosaic renderer
presents to the user. Hooks in the code present the
DISPLAY_TEXT field when a pointing device passes
over an MHMT anchor, open and close appropriate
windows when one is selected, and update the status of
MHMT anchors when windows open or close.

MHTML: extensions to HTML

Two considerations guided our extensions of HTML:
ease of use for authors and logic of presentation for
unmodified browsers. Using existing constructs as much
as possible forwarded both goals. The tendency of
browsers to ignore unrecognized tags permitted us to
accomplish the second goal fairly easily.

A multi-headed/multi-tailed link is enclosed between a
<MHMT> and </MHMT> pair of tags. Between them
text, anchors, and our incoming reference (<IREF>) tag
are all treated specially by our modified browser. An
example link, which leads from a set A of three pages to
a set B of two new pages, follows:

<MHMT text="Continue to Next Set" 
<A HREF="B1.html">New Page 1</A> and
<A HREF="B2.html">New Page 2</A>
<IREF HREF="A2.html">
<IREF HREF="A3.html">
</MHMT>

Figure 1



This example has two outgoing links (as defined in the
<A HREF> tags) and three incoming links (two
explicitly defined with <IREF> tags and one from the
current page).

So, with the MHMT construct the author has control
of what the user sees, where the user is told that he is
going (as opposed to the bare URL displayed by most
browsers), the pages the user must have already visited
(synchronization), and the pages the user will see
afterwards (concurrent browsing).  Though authoring
graphs in this fashion is predictably difficult, we do have
a tool for graph visualization and MHTML authoring.

Multi-Head, Multi-Tail, Multi-Client
communications in the web (MMM2)

As previously mentioned, richer graph models allow
the author to "program" the browsing behavior they want
readers to see by turning the hypertext into a
hyperprogram with specific semantics.

Our previous work with Multi-head Multi-tail Mosaic
extended the Web graph model to include the
programming power and semantics of parallel finite
automata (PFA). The second project extended the
browsing streams which can be synchronized beyond
those of a single user.  Authors can now write documents
which keep multiple users' browsing paths synchronized,
an addition which has obvious utility in instructional as
well as other tasks.

Rather than just increase the power of a single
extended graph model, this second project also focused
on inserting a semantic web graph layer (SWGL) in the
browser. The layer provides an API for addition of new
graph protocols, which allows a standard web browser to
dynamically reinterpret links and nodes within a new
model. The author may suggest, and the reader may
choose from, multiple graph models such as PFAs,
monochromatic Petri nets, CPNs, And/Or graphs, the
Dexter Hypermedia model [5], and so forth.

The Cobweb prototype

Concurrent with the development of the SWGL/proxy
server implementation, a prototype was developed, not
only to rapidly demonstrate the capabilities to potential
users, but also as a means of exploring the capabilities of
HTML browsers, http-servers, and long-lived
connections between the two.  The prototype multi-user
system is based on three components: a graph embedded
in a set of web pages; a state-server that manages the
state of all users; and an agent to relay information
between the state-server and the browser.  For each graph,
there is one set of pages, one state-server, and one agent
per user.

The state-server represents a persistent object that
maintains the state of the multiple users in the graph.  It
listens for requests to update the state of the graph, and

relays all changes of state to all connected users when
any state information changes.  The state transition
model it uses is extremely simple; it consists of a user
request to enter a new state, and can specify whether
other users follow along or not.

On behalf of each user, an agent process is run that
communicates with the state-server, sending out
modified web pages as state information is returned.  The
agent maintains a long-lived connection with the browser
allowing another user's activity to be reflected by the
delivery of new web pages.  The state information
received by the agent not only includes the pages to
deliver, but additional information (the user's name, the
number of users viewing this page, etc.) that can be used
to "edit" the delivered pages.  We used the C macro
preprocessor for the inclusion/exclusion of contents in
the web pages delivered.

The final component is the set of web-pages, whose
links represent the edges of the graph.  All links in these
pages refer to an agent script with parameters to specify
state transitions.  The pages are standard HTML
augmented with C preprocessor editing directives
(#if/#endif).  There is a well-defined set of symbols used
with the C preprocessor, giving the graph author enough
capabilities to control how users move together or
individually through the graph.

Interaction with the prototype falls into two categories:
either the user is actively advancing through the graph by
selecting links, or is being advanced through the graph
by other users.  When a user clicks on a link, it breaks
the connection with the current agent, starting a new
connection with parameters that describe the transition.
The new agent establishes a connection with the state-
server, relays the parameters, and awaits a response that
tells the agent what pages to
deliver and how to run the macro preprocessor.  Once all
of this takes place, the agent waits for updated state
information from the state-server (caused by another
user), and upon receipt, it performs the file editing again,
delivering newly modified pages to the user.

SWGL description

The Semantic Web Graph Layer (SWGL) is an
interpretive layer which filters the interaction between the
reader and the content of the Web.  Currently, the model
is implemented as a proxy server; all HTTP requests for
HTML content go from the web browser through the
proxy, so the SWGL can control at any time the content
viewable by the client.  Multiple page sets are
implemented with the HTML frame construct.  The
SWGL uses a further-extended version of MHTML [2],
which includes a method for specifying protocol types
and transition-activation algebras.

As mentioned above, the SWGL filters the interaction
between the reader and the Web content in the context of
the current graph model. This means nodes and links can



be dynamically interpreted as if they were part of a
monochromatic Petri net, a parallel finite automata, or
even part of the Web graph model. Setting the current
graph model is usually handled by the document's author
though these settings can be overridden with the SWGL
user interface.

This extension of the MMM architecture yields great
flexibility for graph theory research. Significant work has
already been invested in analyzing graph semantics, and a
user-definable, dynamically-switchable interpretive layer
offers a significant tool for such research.  The SWGL
allows us to combine features of existing semantics with
others to investigate additional possible protocols.

For this, we take advantage of the fact that the SWGL
is implemented as a stream of filters which interpret
extended HTML as graph content. Filters can be
composed; the exact order and number of filters is the
specification of a particular graph layer protocol. Protocol
filter streams have been explored in other collaborative
tools such as XPEL [6].

As an example of the power of filter composition,
consider that the difference between PFAs and Petri nets
is that PFAs do not keep track of multiple markings of a
given place; additional tokens are simply discarded.
Given the specification of a PFA graph layer protocol,
the Petri net protocol required only the addition of a
"token counting" filter to the filter stream implementing
the PFA graph layer protocol.  The creation of a multi-
colored token handler, as well as a session management
system, gave us the CPN protocol in a similar  facile
manner.

We also provide within the SWGL a generic session
manager such that workgroup protocols, like CPNs, have
the ability to communicate between users.

Colored Petri nets in classroom
collaboration

In this final section, we focus on a particular extended
graph model, colored Petri nets, and explain how it can
be used as a protocol for synchronized collaborative
exercises, such as are useful in education.  We then
follow with a more detailed explanation of our
implementation of the CPN protocol in the web through
presenting a scenario involving a distributed classroom.

We will focus on the use of CPNs to describe the
behavior of Computer Presented Reading Assignments
(CPRAs).  CPRAs are grouped into difficulty levels
referred to be colors; for example, a student must pass all
assignments at the Silver level before proceeding to the
Gold level.  Within a level, CPRAs have the following
properties:  they may be pursued in any order; a student
starting an assignment must finish before starting
another; students should be able to view the assignment
while being tested upon it (tests are "open book"); the
teacher should be informed when they complete an

assignment (in this case to grade it); a student's progress
should not interfere with or be visible to other students.

The following discussion refers to Figure 2, an excerpt
of the Gold level from a network implementing CPRAs.
Tokens in the network are individually typed for each of
the students and there is a teacher-typed token referring to
the instructor.  We now trace a student's progress through
the Gold level.

From the Enter Gold page the student can begin the
Gold level net by pressing the highlighted Entering Gold
transition.  A student-typed token is placed in the Gold
Introduction page and each of the invisible Must Pass
assignment pages; in an attempt to keep this example
tractable only two assignments are used.  The Gold
Introduction page is then presented to the student,
though the other pages are not.  Invisible pages (dotted
circles on the diagram) are never presented, though their
token marking is taken into account when calculating
what transitions are active.  On entry, both the Go Gold
1 and Go Gold 2 transitions are active since all places on
input arcs are marked with the student's token.  The
presence or absence of other students does not change her
view.

When the student chooses Go Gold 1 the introduction
page is replaced with the Gold 1 Assignment page.  At
this point it might be worthwhile to note one of the
tools our system provides the instructor: as a privileged
user of the session manager, the teacher can check where
any or all of the students are at any time.  Therefore the
teacher has available information like the time each
student is spending on a particular assignment as well as
the level and number of that assignment.

When the student finishes with the Gold 1 Assignment
she can progress to the Gold 1 Test; the assignment page
is remarked as well, putting two windows on the
student's screen so she can review the reading while
answering the test questions as desired above.  Both the
assignment and test pages are unmarked when the student
progresses through the Grade Gold 1 transition.

Grade Gold 1 also generates a teacher-typed token in
the Award Grade Gold 1 page.  This brings up a new
window on the teacher's workstation, presenting him
with the student's answers to the test and the choice of
passing or failing the student.  It is possible to automate
the grading so a process running as a proxy for the
teacher determines pass-fail, but for this example of
collaboration it was desirable to keep the human teacher
in the loop.

If the teacher passes the student the invisible page
Passed Gold 1 is marked with the student's type of
token; if the student fails, the invisible Must Pass Gold
1 page is marked (as it was on entry to the Gold level).
In either case the student progresses to the G o l d
Introduction page where she can choose from the
assignments she still needs to pass.

The Finish Gold transition is active when the student
has passed both assignments at the Gold level and is at
the Gold Introduction page.  The Passed Gold



assignment pages are not truly necessary in the CPN
model, since we already have pages to represent

Figure 2

each page not being completed. CPNs have the ability to
place algebraic formulae on each transition to state an
activation condition based on the exact type of tokens
available. Our example does not include link algebras
because of the added complexity, but note that at least in
this case, links that specified "not-student-token" in the
Must Pass Gold assignment pages would indeed
simplify the net.

While it adds a level of complexity not needed for this
example we have also developed a network representing
an adaptive learning environment where the student can
fail, low pass, pass, or high pass the exam.  The contents
of assignment 2 can then be changed based on the grade
on assignment 1 (or instead of the same assignment 1 the
student can get another assignment at the appropriate
level so answers cannot be memorized).  It is also
possible to have a high pass mark more than one
assignment or to tailor assignments to the types of
learning the student has shown the need for.

Scenario - behind the scenes

The anticipated hardware and software implementation
of the CPRA scenario is based on that in ARPA
educational research: a single high-performance
workstation for the instructor, connected to individual
student computers by a local network.  We foresee the
Session Manager running as a server process on the
instructor's workstation with a copy of the SWGL and a
browser running on each student machine.

The Session Manger is started and stopped by the
instructor, who is then super-user for the Session
Manager.  This means the teacher can add and delete
students, review where students are in the network, and
shut the system down, taking a snapshot of the marking
of the network for restoration at restart.

Student requests for pages from their browser are
passed to the SWGL proxy on their computer where the
legality of the request is checked in terms of the current
graph protocol.  The CPRA example assumes that the
protocol is CPN, though the SWGL was designed to
support multiple graph protocols.

As an example of SWGL operation, consider what
happens when the student passes through the Grade Gold
1 transition (again see Figure 2). The marking in the
network changes, placing a student-type token in the
Await Grading Gold 1 page and a teacher-type token in
the Grading Gold 1 page.  The new teacher-type token is
communicated to the SWGL on the instructor's machine;
a new window will appear with the student's answers to
the test.  Since they only have one input, both the Pass
Gold 1 and the Fail Gold 1 transitions are active. The
teacher selects one of them, for example Pass Gold 1.

Now a teacher-type token is placed in the Teacher Pass
page.  This change must be communicated to the
student's SWGL because the Proceed - Pass Gold 1
transition must be made active.  In the current
implementation the SWGL keeps a long-lived connection
to the browser using the Netscape standard for handling
multi-part MIME messages.  Through this connection,
the SWGL can replace the contents (in which the
transition would not be an available link) with the new
contents (with the transition properly highlighted).

Hopefully it is clear from the current and preceding
sections that the CPN model implemented using the
SWGL can handle concurrency (assignment and test
shown simultaneously), single-user and multi-user
synchronization, having one user's browsing pattern
affects another's, or the content of active pages.  These
capabilities are distributed among several filters which
are composed to provide the desired semantics.

Future work

We look forward to improving the current research in
two ways: the number of different protocols supported,
and the number of users who have tried our system.



Many interesting filters which would have useful
applications in the classroom environment have been
considered for the SWGL. For instance, it would be
possible to provide 'Net-sitter content-filtering based on
site addresses or on-the-fly content analysis; we envision
an instructor choosing to lock-out most non-local sites
during work periods, then releasing the restrictions
during free time.  We also are researching the usefulness
of timed-links, which have a window for activation and
can even fire themselves after a certain interval.

Another filter of interest is one that keeps track of
browsing path and timings on using the Web.  Such a
filter will be a necessary part of user studies with MMM
in a real classroom.  Another prelude to user studies is
tuning the SWGL implementation for performance.  We
envision optimization strategies for browser-to-SWGL-
to-WWW communications, as well as examining how
the SWGL can best do caching for the attached browser.

We hope to have hardware in place soon to permit the
testing of MMM as a classroom support system.  In
addition to trying to find an elementary education
setting, we are investigating candidate college settings.
One stumbling block is the development of appropriate
curricula; we are actively looking for ways to incorporate
existing resources.

Conclusions

Providing a semantic layer between the browser and
the Web permits MMM to support complex, cooperative
tasks on the Web.  Concurrent browsing streams can be
split and synchronized between multiple users of the
system under author control.  Providing this power to
authors is useful in many contexts including education
(as described above), business process workflows, and
other process control situations.

Formalizing the interaction between various browsing
streams permits multi-user browsing; it also permits the
application of prior research in parallel and distributed
computing (and the reuse of found solutions) to the
enhanced Web.  As it becomes apparent that the
simplicity of the Web must give way to greater
functionality, MMM provides a flexible, extensible,
solution running atop current standards.

Current information about the MMM project is
available at http://www.cs.unc.edu/~stotts/MMM/.
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